• Home
  • »
  • Blog
  • »


Sep 03,2021
Contact tips are highly misunderstood components in a welding gun setup. Choosing the correct contact tip for your welding application and understanding how to keep it performing at its best are just as critical as anything else needed to produce a quality weld.

Using a contact tip that is too big or too small can create problems such as microarcing, overheating, friction, and wire jamming—all of which can lead to wire burnback.

Contact tips are one of the most frequently misunderstood and most often replaced components of a welding gun setup. The contact tip is responsible for guiding the wire and transferring the current from the conductor tube—sometimes referred to as a swanneck or gooseneck—through the filler wire and ultimately to the workpiece. Its critical functions include current transfer and wire targeting.

Contact tip size determines what wire size you can use and the amount of filler material that will be distributed during welding. When a contact tip begins to wear, the through-hole elongates and loses electrical conductivity, which greatly affects the gun’s ability to transfer current to the welding wire. Additionally, the tool center point (TCP) begins to fluctuate as the wire dances around inside the now oversized tip. These conditions lead to poor arc starts, lower penetration, and decreased weld quality.
Choosing the correct contact tip for your welding application and understanding how to keep it performing at its best are just as critical as choosing all the other components and parameters needed to produce a quality weld.

Common Contact Tip Types
Four types of contact types are most commonly used in welding applications, and each has its pros and cons:

#1: Standard Copper Contact Tip (E-Cu)
A standard copper contact tip has a relatively high current transfer rate at greater than 55 S/m* electrical conductivity, and it is used mostly in hand-held welding applications.

Although standard copper offers the highest conductivity of all of the standard alloys, it is more susceptible to mechanical wear than other materials. As a raw mineral, copper naturally is relatively soft, which means it makes current transfer easier, but it also means the material has a lower melting point. As the temperature rises in an E-Cu tip, it becomes softer than the wire that is being fed through it. As the copper softens, the wire wears and deforms the internal diameter of the tip. This prevents the wire from contacting the tip correctly, which decreases conductivity and leads to arc-start issues, burnback, and poor welds.

The E-Cu tip is usually the most affordable, so it’s generally an acceptable trade-off to frequently replace it when precise wire targeting is not critical.

#2: Copper-Chrome-Zirconium Contact Tip (CuCrZr)
A copper-chrome-zirconium tip generally is used in automated and robotic welding applications where precise TCP is needed and high duty cycles occur. Although there is some decline in electrical conductivity compared with the standard copper tip (50 S/m), it is sufficient for most steel applications.

However, since CuCrZr alloy softens at a much higher temperature, it tends to have a longer life span than standard copper tips. Generally speaking, the tip maintains its shape up to approximately 932 degrees F versus 500 degrees for E-Cu. Therefore, the higher-density material leads to a lower wear rate and increases the tip’s performance and productivity.

For hot wire feeding processes in laser optics,  copper chrome zirconium are must-use because of their ability to hold up to hot wire feeding processes.

#3: Silver-Plated Contact Tip
Over the years technological advancements in contact tips have revealed that silver plating the interior and exterior of a contact tip further enhances its overall performance.

When a contact tip begins to wear, the through-hole elongates and loses electrical conductivity, which greatly affects the gun’s ability to transfer current to the welding wire.

Silver is more conductive than copper (62.1 S/m), which reduces micro-arcing, extends contact tip life, improves arc starts, and provides consistent weld quality. Silver is approximately 17 percent denser than copper and it has a higher melting point. Silver’s shiny surface helps to reflect heat. As a result, spatter doesn’t adhere to the tip as easily and it doesn’t wear down quite as quickly. In fact, the life span of a silver-plated contact tip can be nine times longer than that of a standard precision-drawn copper tip.

With significant improvements in material, a silver-plated contact tip can cost up to 50 percent more than the standard non-plated CuCrZr tip. Welders who choose to use a silver-plated contact tip usually do so for one reason—less welding downtime. The more the welding robot welds, the greater the throughput. Based on the overall longevity, current transfer, and quality of material, the silver-plated tips are an excellent choice for automatic and robotic welding applications.

#4: Heavy Duty Silver-Plated CuCrZr Contact Tip
Using a process called dispersion-hardening, which basically keeps the properties of metal from dispersing at elevated temperature, the Heavy Duty Silver-Plated Contact Tips can last even longer than the Silver-Plated contact tips noted above.

This make of contact tip carries a hardness value of 180, and won't experience wear until the contact tip temperature reaches upwards of 800 degrees Celsius. Because of it's conductivity, it will also experience a lot less spatter adhesion than copper or non-plated copper chrome zirconium.

Heavy Duty Silver-Plated are always made using CuCrZr contact tips as the base because it combines the better hardening of the copper chrome zirconium with the superior conductivity of the silver. This produces an overall better electrical conductivity profile while still being harder. They are more expensive than the standard ones, but have a low cost of ownership in right application - typically heavy amperage robotic processes.

#5: Stainless Steel Contact Tip
These types of contact tips only really have an application in laser optic processes. Stainless is good to use for Cold Wire Feeding processes. Steel equal poor electrical conductivity, but it does have good wear resistance. Stainless steel is also harder than copper, so there's usually less wear experience in the contact tip bore.

Stainless steel contact tips are recommended when using copper wire in laser optic processes. If you use Aluminum, it would be better to look to copper or copper chrome zirconium, because this contact tip profile is often too hard for a soft aluminum wire profile.

Advice to Common Contact Tip Problems
Once you’ve matched your contact tip to your welding application, there are a few things you can do to make sure you are getting the most out of it and not inadvertently creating problems that could decrease its life span or effectiveness.

Let the torch cool before you change a contact tip. A hot torch can make changing a contact tip very difficult and hazardous. The presence of heat makes it easier to cross-thread the new contact tip, ruining not only the tip, but also the torch neck.

Use the correct tip size. Using an oversized tip results in poor current transfer; increased microarcing; and hotter tip temperatures, which lead to wire burnback. Using an undersized tip increases friction and causes the wire to jam in the tip or feed erratically, which also results in wire burnback.

Properly tighten the tip. A contact tip that has not been tightened down correctly causes poor current transfer, microarcing, and overheating. When this takes place you will most likely experience erratic wire feeding, poor arc starts, and burnback of the weld wire into the tip.

Read your tip’s appearance for problems that you can’t necessarily see. A contact tip that has turned blue or purple is generally a sign that you have a poor connection (including the ground), your consumables are too big, or you have exceeded the torch’s amperage rating or duty cycle. In severe instances the contact tip’s exterior surface will become covered in scale.